Featured Post

High CMRR Instrumentation Amplifier (Schematic and Layout) design for biomedical applications

Instrumentation amplifiers are intended to be used whenever acquisition of a useful signal is difficult. IA’s must have extremely high input impedances because source impedances may be high and/or unbalanced. bias and offset currents are low and relatively stable so that the source impedance need not be constant. Balanced differential inputs are provided so that the signal source may be referenced to any reasonable level independent of the IA output load reference. Common mode rejection, a measure of input balance, is very high so that noise pickup and ground drops, characteristic of remote sensor applications, are minimized.Care is taken to provide high, well characterized stability of critical parameters under varying conditions, such as changing temperatures and supply voltages. Finally, all components that are critical to the performance of the IA are internal to the device. The precision of an IA is provided at the expense of flexibility. By committing to the one specific task of

Performance gain with latches

The property of latches being transparent gives them a basic characteristic, known as time borrowing, owing to which they can capture data over a period of time rather than an instant. Using this property of latches intelligently can result in performance advantage for specific design scenarios, especially for designs having asymmetric data paths in subsequent stages. Let us elaborate with the help of an example.
Let us suppose a design having two stages of pipeline with combinational logic in each stage as 12 ns and 5 ns respectively as shown in figure 1 below:

Figure 1: 2-stage pipelining

If we assume clock period to be 16 ns (half cycle being 8 ns), then each latch stage will borrow time from the subsequent stage as shown in figure below:




.

Now, since all the registers get the same clock signal, the minimu clock period is the maximum of combinational delays from REGA to REGB and REGB to REGC.

Tclk > MAX (TcombregA->regB, Tcombr(regB->regC))



Thus, this circuit cannot run with clock period less than 12 ns.

This situation can be easened up if we replace REGB with a negative level-sensitive latch. Let us have a look at figure 2 below. Although the number of stages still remains the same, LATB can borrow time from next stage without impacting any logic.

Figure 2: Latch replacing register in the 2-stage pipelining
The same is shown in figure 3 below with the help of waveform. The clock is having a period of 9 ns. The latch can borrow time of 3 ns from next stage, still meeting the setup time by 1 ns. Thus, we have succeeded in reducing the time period from 12 ns to 9 ns, just by changing the register to a latch. This is how a latch can help gain in performance.

If there are multiple latch stages in series, each can borrow from the subsequent stage such that overall timing is met. For example, figure 3 shows 6 latches in series. Figure 4 shows the corresponding waveform for each latch borrowing time from subsequent stage.


Comments