Featured Post

High CMRR Instrumentation Amplifier (Schematic and Layout) design for biomedical applications

Instrumentation amplifiers are intended to be used whenever acquisition of a useful signal is difficult. IA’s must have extremely high input impedances because source impedances may be high and/or unbalanced. bias and offset currents are low and relatively stable so that the source impedance need not be constant. Balanced differential inputs are provided so that the signal source may be referenced to any reasonable level independent of the IA output load reference. Common mode rejection, a measure of input balance, is very high so that noise pickup and ground drops, characteristic of remote sensor applications, are minimized.Care is taken to provide high, well characterized stability of critical parameters under varying conditions, such as changing temperatures and supply voltages. Finally, all components that are critical to the performance of the IA are internal to the device. The precision of an IA is provided at the expense of flexibility. By committing to the one specific task of ...

How to Embed/Integrate the Circuit?

This is for those who doesn't know how to solder/integrate/Embed their circuits/system on to the Veroboard/PCB/Vector board. Many new people do the same mistake 

- first they will solder every thing and they inserts all ICs in it, after that once they switch on the power supply   they will experience short circuit, higher voltage, low voltage and IC burning problems. 

- These problems are due the lack of knowledge in design.

- Follow these steps to avoid such kind of problems 

1. Be ready with your working circuit, components, digital multimeter, soldering iron, etc.,

2. In any circuit first solder the power supply, it may be from AC to DC or DC to DC.

3. Check the input, output and intermediate voltages(in case of many stages) with Digital Multimeter(DMM).
    Verify the measured voltages with required voltages. If not, verify the connections and see whether you         connected the same component or not. If you get the required voltages then proceed to the next step,           otherwise don't proceed until you rectify the issue because this will cause to major problems further.


                                         

4. Now First solder the IC bases and give only Power supply connections to the base. Check the voltage in each and every pin with respect to the ground pin. If you get the required voltages proceed to the next step,   otherwise verify the connections.Make sure that ICs are not inserted in to the bases.


                                       

5. Connect the other components like resistor, capacitor networks and relays etc., check the input and output of each sub network individually. If you get the satisfied voltages then integrate them together. Check for the entire circuit voltages at each pin with respect to the ground pin. Check for the connection if you get undesired results. Make sure that ICs are not inserted in to the bases.

                                   

6. If you are sure that you are getting all desired voltages you can insert ICs in it. Check the connectivity of each pin with multimeter to identify whether there is any loose contact or short circuit contact.

                                  

If all the connections and input output voltages are correct but still if the functionality is wrong then make sure that IC is working properly or not and check for the programming errors.

                                

Comments