Featured Post

High CMRR Instrumentation Amplifier (Schematic and Layout) design for biomedical applications

Instrumentation amplifiers are intended to be used whenever acquisition of a useful signal is difficult. IA’s must have extremely high input impedances because source impedances may be high and/or unbalanced. bias and offset currents are low and relatively stable so that the source impedance need not be constant. Balanced differential inputs are provided so that the signal source may be referenced to any reasonable level independent of the IA output load reference. Common mode rejection, a measure of input balance, is very high so that noise pickup and ground drops, characteristic of remote sensor applications, are minimized.Care is taken to provide high, well characterized stability of critical parameters under varying conditions, such as changing temperatures and supply voltages. Finally, all components that are critical to the performance of the IA are internal to the device. The precision of an IA is provided at the expense of flexibility. By committing to the one specific task of

Simple Cold-Cathode Fluorescent-Lamp Supply Circuit Diagram

Simple Cold-Cathode Fluorescent-Lamp Supply Circuit Diagram. For back-lit LCD displays, this supply will drive a lamp. LT1072 drives Ql and Q2, and a sine wave appears across CI. LI is a transformer that steps up this voltage to about 1400 V. Dl and D2 detect lamp current and form a feedback loop to the LT1072 to control lamp brightness. C1 = MUST BE A LOW LOSS CAPACITOR. METALIZED POLYCARB WIMA FPK 2 (GERMAN) RECOMMENDED. L1 = SUMIDA 6345-020 OR COILTRONIX CTX110092-1. PIN NUMBERS SHOWN FOR COILTRONIX UNIT. L2 = COILTRONIX CTX300-4 * = 1 % FILM RESISTOR. 

  Cold-Cathode Fluorescent-Lamp Supply Circuit Diagram


 Cold-Cathode Fluorescent-Lamp Supply Circuit Diagram

Comments