Featured Post

High CMRR Instrumentation Amplifier (Schematic and Layout) design for biomedical applications

Instrumentation amplifiers are intended to be used whenever acquisition of a useful signal is difficult. IA’s must have extremely high input impedances because source impedances may be high and/or unbalanced. bias and offset currents are low and relatively stable so that the source impedance need not be constant. Balanced differential inputs are provided so that the signal source may be referenced to any reasonable level independent of the IA output load reference. Common mode rejection, a measure of input balance, is very high so that noise pickup and ground drops, characteristic of remote sensor applications, are minimized.Care is taken to provide high, well characterized stability of critical parameters under varying conditions, such as changing temperatures and supply voltages. Finally, all components that are critical to the performance of the IA are internal to the device. The precision of an IA is provided at the expense of flexibility. By committing to the one specific task of ...

Half adder


Half adder


5ShareHalf add.
To understand what is a half adder you need to know what is an adder first. Adder circuit is a combinational digital circuit that is used for adding two numbers. A typical adder circuit produces a sum bit (denoted by S) and a carry bit (denoted by C) as the output. Typically adders are realized  for adding binary numbers but they can be also realized  for adding other formats like BCD (binary coded decimal, XS-3 etc. Besides addition, adder circuits can be used for a lot of other applications in digital electronics like address decoding, table index calculation etc. Adder circuits are of two types: Half adder ad Full adder. Full adder s have been already explained in a previous article and in this topic I am giving stress to half adders.
Half adder is a combinational  arithmetic circuit that adds two numbers and produces a sum bit (S) and carry bit (C) as the output. If  A and B are the input bits, then sum bit (S) is the X-OR of A and B  and the carry bit (C) will be the AND of A and B. From this it is clear that a half adder circuit can be easily constructed using one X-OR gate and one AND gate. Half adder is the simplest of all adder circuit, but it has a major disadvantage.  The half adder can add only two input bits (A and B) and has nothing to do with the carry if there is any in the input. So if the input to a half adder have a carry, then it will be neglected it and adds only the A and B bits. That means the binary addition process is not complete and that’s why it is called a half adder. The truth table, schematic representation and XOR//AND realization of a half adder are shown in the figure below.


Comments