Skip to main content

Microcontroller Based Electronic Thermostat Project Electronic Thermostat

Electronic Thermostat
Mechanical thermostat has been around for a long time and has been used in industrial control, home appliances control and many other devices to measure and control the temperature of a certain processes. The sensor used usually is a bimetallic sensor that is make from two different metals that expand at different rates as they are heated up. These metal strips are bonded together and when the temperature rises, the strips will bend upward hence making connection to the contact of the circuit so that current can flow through the circuit.
As the temperature cools down, it will go back to its original position and disconnect the current from the circuit. By adjusting the strip and the contact, the temperature can be contolled. Most oven and air conditioners use this type of sensor. The mechanical thermostat is more widely used due to its lower cost compared to electronic thermostat.
The use of electronic thermostat is becoming more popular now as the cost of semiconductor continues to drop with the advancement of better fabrication and packaging processes. Many applications have switched to electronic control as the control of the temperature is more accurate, easier to control the desired temperature using digital technology, more reliable and interfacing with other devices.
This application note from Microchip uses a low cost 6 pin microcontroller in the design of electronic thermostat. The features of PIC10F204 are as shown below. One advantage is that it has the PDIP package which makes it easier for electronic hobbyists to do their own soldering.

  • 256 Words Program Memory and 16 bytes Static RAM
  • Wide Operating Voltage from 2.0V to 5.5V DC
  • 3 I/O
  • 1 comparator
  • 25 mA source/sink current I/O
  • 1 8-bit timers.

Among the learning experiences one gained from this projects are:
  • Power supply is directly tapped from the AC lines voltage using a resistive based power supply. This makes the entire circuit live and one has to be careful when implementing this project. Ensure that no parts of the circuit is accessible to any user. Use a plastic enclosure to house the printed circuit board properly.
  • The principles of triac is briefly discussed here. The use of zero crossing detection is useful as many applications use this method in their operations. Among them are light dimmer and motor control applications.
  • Learn how to optimise the program code to make it efficient. Many programmers use long routines to accomplish a certain task when a few lines of codes would be sufficient. This experience needs to be learned as one hands on a project and repeatedly look into the code to make it shorter and efficient.
  • Having learned the code, one can then modify and add temperature sensor to make it a close loop control. Display circuity and user interface can be added to the system by migration to a higher pin count microcontroller.

The full application note and source code of the Microcontroller Based Electronic Thermostat Project can be obtained from Microchip website.

Comments

Popular posts from this blog

Build a Low Noise And Drift Composite Amp Circuit Diagram

How to Build a Low Noise And Drift Composite Amp Circuit Diagram. This circuit offers the best of both worlds. It can be combined with a low input offset voltage and drift without degrading the overall system`s dynamic performance. 
 Low Noise And Drift Composite Amp Circuit Diagram


Compared to a standalone FET input operational amplifier, the composite amplifier circuit exhibits a 20-fold improvement in voltage offset and drift. In this circuit arrangement, A1 is a highspeed FET input op amp with a closed-loop gain of 100 (the source impedance was arbitrarily chosen to be 100 kfl). A2 is a Super Beta bipolar input op amp. It has good dc characteristics, biFET-level input bias current, and low noise. A2 monitors the voltage at the input of A1 and injects current to Al`s null pins. This forces A1 to have the input properties of a bipolar amplifier while maintaining its bandwidth and low-input-bias-current noise.

High Power Output Amplifier TDA7294

The famous SGS-THOMSON ST Microelectronics has introduced a Hi-Fi DMOS high-power amplifier circuit TDA7294, its sound great taste bile, which due to its internal circuit from input to output are field-effect devices, rounded sound Mild, delicate Rounuan.  However, with its assembly amplifier, only TDA7294 single-output power is only 70 W, BTL access law is 100 W from top to bottom, do not feel that power cushion. The author several tests, used to promote TDA7294-level, direct-drive one to four pairs of high-power transistor parallel, the output of strong currents, the power output of 400 W (mono), and the circuit is simple and no need to debug that can reliably work Basically, the IC has maintained a sound and performance.  Ruzuo The figure below shows, R6 for the feedback resistor, the author of the value in debugging 22 k Ω more appropriate, R6 also decided this circuit gain, the gain value will increase.  Quiescent current depends on the power of R7, R8, when its value…

Full Power Mobile Phone Jammer Circuit Diagram

Full Power Mobile Phone Jammer Circuit Diagram.To day if we are talking about expert Cell phone Jammers we are conversing about this schematic underneath. First off all you should be very very cautious how to use this apparatus. Its completely illegal and so the reason. I post this Circuit is only for educational and testing causes. This type of apparatus is being utilised by security for VIPS, particularly at their limousines to avoid blasting device initiating while the vehicle passes from the goal cell phone-bomb. Off course there are those who use it to make a antic or to make the persons crazy in the rectangle block you are. 
The power of the jammer is currently sufficient to do your thing, but certainly you can place a 30W linear power amp at the RF output and impede a much wider locality. So, Be pleasant individual with that and recall that there are people who may need desperately to obtain or make a call and one of them could be you! And if you can't oppose of functioning …