Skip to main content

Role of the Power Supply within the System and Design Program

The three major power supply technologies that can be considered within a power supply system are:
1. Linear regulators.
2. Pulsewidth modulated (PWM) switching power supplies.
3. High efficiency resonant technology switching power supplies.
Each of these technologies excels in one or more of the system considerationsmentioned above and must be weighed against the other considerationsto determine the optimum mixture of technologies that meet the needs ofthe final product. The power supply industry has chosen to utilize each of the technologies within certain areas of product applications as detailed in thefollowing.

Linear regulators are used predominantly in ground-based equipments where
the generation of heat and low efficiency are not of major concern and also where
low cost and a short design period are desired. They are very popular as boardlevel
regulators in distributed power systems where the distributed voltage is less
than 40VDC. For off-line (plug into the wall) products, a power supply stage
ahead of the linear regulator must be provided for safety in order to produce
dielectric isolation from the ac power line. Linear regulators can only produce
output voltages lower than their input voltages and each linear regulator can
produce only one output voltage. Each linear regulator has an average efficiency
of between 35 and 50 percent. The losses are dissipated as heat.
PWM switching power supplies 
PWM switching power supplies are much more efficient and flexible in their use than linear regulators. One commonly finds them used within portable products, aircraft and automotive products, small instruments, off-line applications, and generally those applications where high efficiency and multiple output voltages are required. Their weight is much less than that of linear regulators since they require less heatsinking for the same output ratings. They do, however, cost more to produce and require more engineering
development time.
High efficiency resonant technology switching power supplies
This variation on the basic PWM switching power supply finds its place in applications where still lighter weight and smaller size are desired, and most importantly, where a reduced amount of radiated noise (interference) is desired. The common products where these power supplies are utilized are aircraft avionics, spacecraft electronics, and lightweight portable equipment and modules. The drawbacks are that this power supply technology requires the greatest amount of engineering design time and usually costs more than the other two technologies.
The trends within the industry are away from linear regulators (except for board-level regulators) towards PWM switching power supplies. Resonant and quasi-resonant switching power supplies are emerging slowly as the technology matures and their designs are made easier.


Popular posts from this blog

Build a Low Noise And Drift Composite Amp Circuit Diagram

How to Build a Low Noise And Drift Composite Amp Circuit Diagram. This circuit offers the best of both worlds. It can be combined with a low input offset voltage and drift without degrading the overall system`s dynamic performance. 
 Low Noise And Drift Composite Amp Circuit Diagram

Compared to a standalone FET input operational amplifier, the composite amplifier circuit exhibits a 20-fold improvement in voltage offset and drift. In this circuit arrangement, A1 is a highspeed FET input op amp with a closed-loop gain of 100 (the source impedance was arbitrarily chosen to be 100 kfl). A2 is a Super Beta bipolar input op amp. It has good dc characteristics, biFET-level input bias current, and low noise. A2 monitors the voltage at the input of A1 and injects current to Al`s null pins. This forces A1 to have the input properties of a bipolar amplifier while maintaining its bandwidth and low-input-bias-current noise.

High Power Output Amplifier TDA7294

The famous SGS-THOMSON ST Microelectronics has introduced a Hi-Fi DMOS high-power amplifier circuit TDA7294, its sound great taste bile, which due to its internal circuit from input to output are field-effect devices, rounded sound Mild, delicate Rounuan.  However, with its assembly amplifier, only TDA7294 single-output power is only 70 W, BTL access law is 100 W from top to bottom, do not feel that power cushion. The author several tests, used to promote TDA7294-level, direct-drive one to four pairs of high-power transistor parallel, the output of strong currents, the power output of 400 W (mono), and the circuit is simple and no need to debug that can reliably work Basically, the IC has maintained a sound and performance.  Ruzuo The figure below shows, R6 for the feedback resistor, the author of the value in debugging 22 k Ω more appropriate, R6 also decided this circuit gain, the gain value will increase.  Quiescent current depends on the power of R7, R8, when its value…

Full Power Mobile Phone Jammer Circuit Diagram

Full Power Mobile Phone Jammer Circuit Diagram.To day if we are talking about expert Cell phone Jammers we are conversing about this schematic underneath. First off all you should be very very cautious how to use this apparatus. Its completely illegal and so the reason. I post this Circuit is only for educational and testing causes. This type of apparatus is being utilised by security for VIPS, particularly at their limousines to avoid blasting device initiating while the vehicle passes from the goal cell phone-bomb. Off course there are those who use it to make a antic or to make the persons crazy in the rectangle block you are. 
The power of the jammer is currently sufficient to do your thing, but certainly you can place a 30W linear power amp at the RF output and impede a much wider locality. So, Be pleasant individual with that and recall that there are people who may need desperately to obtain or make a call and one of them could be you! And if you can't oppose of functioning …